Dice Loss
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
What is the formula for the dice loss used in segmentation tasks?
\[\mathcal{L}_{dice} = 1 - \frac{2 \cdot |A \cap B|}{|A| + |B|}\]Where \(A\) and \(B\) are the ground truth and predicted mask.
In PyTorch this can be implemented as:
def dice_loss(input, target):
smooth = 1.
iflat = input.view(-1)
tflat = target.view(-1)
intersection = (iflat * tflat).sum()
return 1 - ((2. * intersection + smooth) /
(iflat.sum() + tflat.sum() + smooth))